Kamis, 06 Desember 2012

Selasa, 30 Agustus 2011

Takbir Hari Raya

الله اكبر كبيرا والحمد لله كثيرا وسبحان الله بكرة واصيلا, لااله الا الله وحده, صدق وعده, ونصر عبده, وأعزجنده وهزم الاحزاب واحده, لااله الاالله ولانعبد الاإياه, مخلصين له الد ين, ولو كره الكا فرون, ولو كره المنافقون, ولوكره المشركون, لااله الاالله والله اكبر, الله اكبر ولله الحمد


Allaahu akbaru kabiiraa walhamdulillaahi katsiiraa,...
, wasubhaanallaahi bukrataw - wa ashillaa. Laa - ilaaha - illallaahu wahdah, shadaqa wa'dah, wanashara 'abdah............................


 untuk versi lengkap beserta artinya silakan didownload disini



Minggu, 14 Agustus 2011

Kalkulus II

INTEGRAL


1. Integral as Anti-Derivative

Integration is notated ∫ , introduced by Leibniz (1646-1716) from German. The relationship between Integral and Differentiation can be written :

.


2. Indefinite Integral

Suppose we have :

F(x) = 3x2 + 5x - 7 , then F’(x) = 6x + 5.

F(x) = 3x2 + 5x + 8 , then F’(x) = 6x + 5

F(x) = 3x2 + 5x + c , then F’(x) = 6x + 5

So we have, , called as an indefinite integral.

C may value 1,2,3, …(indefinite) = constant of integration

f(x) is integrand and F(x) is common integral function.

a. Indefinite integral of Algebraic Function

Suppose a is any real constant, f(x) and g(x) is each an integral function whose common integral function can be defined, then we have some formulas and properties as follows:

1). ∫ d ( F (x) ) = F (x ) + C

2). ∫ k d x = k x + C

3). ∫ xn dx = x n+1 + C, with n ≠ - 1

n +1

4). For n = - 1, formula ( 3 ) can be : ∫ 1/x dx = ln x + C

5). ∫ k f ( x ) dx = k ∫ f (x) dx

6). ∫ [ f ( x ) + g (x) ] dx = ∫ f (x) dx + ∫ g ( x ) dx

7). ∫ [ f ( x ) - g (x) ] dx = ∫ f (x) dx - ∫ g ( x ) dx

Example:

1) Find the result of ∫ ( 5x9 – 3x5 + 2xÖx + x-1 - 5)dx

= 5 x103 x6 + 2x5/2 + Ln x + C

10 6 5/2

= 5 x103 x6 + 4 x5/2+ Lnx + C

10 6 5

= 1 x101 x6 + 4√x5+ Lnx + C

2 2 5

Exercise:

A. Find the result of these integrals !

1. ∫ F(x) dx, where F(x) = …………………………

2. ∫ F(s) ds, where F(s) = …………………………

3. ∫ G(t) dt , where G(t) = …………………………

B. Find function F if the following are given : F’(x) = 6x2 , F(0) = 0

C. Given that F’(x) = 4x-1 and F(3) = 20. Find the F(x) !

D. The slope of tangent of a curve at each point (x,y) is expressed by dy/dx = 3x2 – 6x + 1. If the curve passes point (2,-3), find its equation !

Solution :

b. Indefinite integral of Trigonometric Function

The rule of determining the integral of a trigonometric functions based on the differentiation of each function is as follows:

1). If y = Sin x → then dy/dx = Cos x → dy = Cos x dx

∫ dy = ∫ Cos x dx

y = Sin x + C

2). If y = Cos x → dy/dx = - Sin x → dy = - Sin x dx

∫ dy = ∫ - Sin x dx

y = Cos x + C

∫ dy = ∫ Sin x dx

y = - Cos x + C

3). If Y= tan x = sin x/ cos x = U/V =U'.V - V'.U

V2

Then, Y' = Cos x Cos x – (- Sin x ) Sin x

Cos2 x

= Cos2 x + Sin2 x

Cos2 x

= 1/ Cos2 x = Sec2 x

So, = ∫ Sec 2x dx = tan x + C

4). If Y= Cot x = Cos x/ sin x = U/V =U'.V - V'.U

V2

Then Y' = - Sin x Sin x – Cos x Cos x

Sin2 x

= - Sin2 x – Cos2 x

Sin2 x

= - ( Sin2 x + Cos2 x)

Sin2 x

= -1/ Cos2 x = - Cosec2 x

So, = ∫ Cosec2 x dx = Cot x + C

FORMULAS OF INTEGRAL TRIGONOMETRIC

1). Sin x dx = - Cos x + C

2). Cos x dx = Sin x + C

3). tan x dx = ln | Sec x | + C = - ln | Cos x | + C

4). Cot x dx = ln | Sin x | + C

5). Cosec x dx = ln | Cosec x – Cot x | + C = ln | tan x/2 | + C

6). Sec x dx = ln | Sec x + tan x | + C = ln | tan ( x/2 + λ/2 | + C

7). Cosec2 x dx = - Cot x + C

8). Sec2 x dx = tan x + C

9). Cosec x Cot x dx = - Cosec x + C

10). Sec x tan x dx = Sec x + C

11). Sin ax dx = -1/α Cos α x + C

12). Cos ax dx = 1/a Sin ax + C

13). Sin (ax + b) dx = 1/-α Cos (α x + b ) + C

14). Cos( ax + b) dx = 1/α Sin ( αx + b) + C

15). Sinⁿ x Cos x dx = 1/n+1 Sinn+1 x + C

16). Cosⁿ x Sin x dx = - 1/n+1 Cosn+1 x + C

NOTES :

Please Remember some importants Formulas to help you find the integral of Trigonometric functions !

Cos² x +Sin² x = 1

Sin² x = ½ (1 – Cos 2 x )

Cos² x = ½ (1 + Cos 2 x )

1 + tan² x = Sec² x

2 Sin α Cos β = Sin (α + β ) + Sin (α - β )

2 Cos α Sin β = Sin (α + β ) - Sin (α - β )

2 Cos α Cos β = Cos (α + β ) + Cos (α - β )

- 2 Sin α Cos β = Cos (α + β ) - Cos (α - β )

Examples:

1). ∫ (5 Sin x – 3Cos x + 2 Sec2 x)dx

= 5 (- Cos x ) – 3Sin x + 2 tan x + C

= - 5 Cos x – 3Sin x + 2 tan x + C

2). ∫ (5 Sec2 x – 2 Sin x + 3 Cosx) dx

= 5 tan x + 2 Cos x + 3 Sin x + C

C. Integration by substitution method

Suppose by applying a substitution of u = g(x), where g is a function with derivation so that ∫f(g(x)).g’(x)dx can be changed into ∫f(u)du. If f(u) is an anti-derivative of f(x), then ∫f(g(x)).g’(x)dx = ∫f(u)du = F(u) + C = F(g(x)) + C.

To get better understanding about the above formula, study the following example:

1). Find the results of:

a) ∫x (3x2 – 5 x)10 dx

Solution: Suppose U = 3x2 – 5

du/dx = 6x

du = 6x dx

1/6 du = x dx

So, ∫x (3x2 – 5 x)10 dx = ∫ U10 .1/6 du

= ∫ 1/6 .1/11U11 + C

= ∫ 1/66 U11 + C

= ∫ 1/66 ( 3x2 – 5 )10 + C

b) ∫ (Sin 7x) Cos x dx

Solution : Suppose U = sin x

du/dx = Cos x

du = Cos x dx

So, ∫ (Sin 7x) Cos x dx = ∫ U7 . du

= ∫ 1/8 U8 + C

= 1/8 Sin x8 + C

C) ∫( x4 + 3x )30 ( 4 x3 ) dx

Solution : Suppose U = x4 + 3x

du/dx = 4 x3 + 3

du = 4 x3 + 3 dx

So, ∫ ( x4 + 3x )30 ( 4 x3 ) dx

= ∫ U30 .du

= ∫1/31 U31 + C

= ∫1/31 ( x4 + 3x )31 + C

d) ∫ Cos ( 3x +1). Sin ( 3x + 1 ) dx

Solution : Suppose U = Sin ( 3x + 1 )

du/dx = Cos (3x + 1).3

du = Cos (3x + 1).3 dx

1/3 du = Cos (3x + 1) dx

So, Cos ( 3x +1). Sin ( 3x + 1 ) dx

= ∫ 1/3 du . U

= U. 1/3 du

= ½ U2. 1/3 du

= ½ .1/3 U2 + C

= 1/6 U2 + C

= 1/6 Sin2. (3x +1)+ C

e). ∫ Sin5 x2 ( x . Cos )2 dx

Solution: Suppose U = Sin x2

du/dx = Cos x2 . 2x

du = 2x Cos x2.dx

½ du = x cos x2 .dx

So, ∫ Sin5 x2 ( x . Cos )2 dx = ∫ U5.½ du

= ∫ 1/6 U6. ½ du

= ∫ ½. 1/6 U6 + C

= ∫ 1/12 U6 + C

= 1/12 ( Sin x2 )6 + C

Exercises :

By Using the substitution method find the following integrals !

1) ∫ ( x4 - 1 ). x2 dx = ….

2) ∫ 3y dy

2y2 +5

3) ∫ √ (7x+4) dx = …